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Abstract Mathematical models of ion transport in a potential field are analyzed.
Ion transport is regarded as the superposition of diffusion and migration. The explicit
analytical formulaes are obtained for the concentration of the reduced species and the
current response in the case of pure diffusive as well as diffusion–migration model,
for various initial conditions. The comparitive analysis of these formulaes for cur-
rent responses and deviation from the classical Cottrellian are derived. The proposed
approach can predict an influence of ionic diffusivities, valences, initial and boundary
concentrations to the behaviour of current response. In addition to these, the analytical
formulaes obtained can also be used for numerical and digital simulation methods for
Nernst-Planck equations.

Keywords Ion transport · Chronoamperometry · Cottrell experiment · Diffusion–
migration · Current response · Analytical solution

1 Introduction

In recent years there has been growth of interest in the theoretical and computational
modelling of electroanalytical experiments performed under conditions of semi-infi-
nite diffusion–migration transport (see, for example, [1,2] and references therein).
Mathematical modelling of such problems in electrochemistry, in general, and in
chronoamperometry, in particular, is usually based on the Nernst-Planck equations
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[3–6]. In many cases these models are quite complicated due to their nonlinearity.
More realistic models, in particular, models in real time and space domains, certainly
require numerical simulations [7,8]. This is one of reasons why most of the results
have been obtained for simplest or/and steady state experiments. Analytical solutions
obtained for these simplest models permit one to understand experiments. Moreover,
some relationships obtained by this way may play a key role in finding out some dis-
tinguished features of an experiment, which can not be estimated experimentally. In
chronoamperometry such a classical result has been obtained by Cottrell [9]. In 1902
Cottrell derived a linear initial-boundary value problem (IBVP) and demonstrated that,
if an extreme potential is suddenly applied to an electrode in contact with a solution
containing a uniform concentration of an electroreactant, then the resulting current
response ID , defined to be as Cottrellian, is proportional to 1/

√
t . Subsequently this

result has also been confirmed experimentally. This relationship assumes that the ion
transport is purely diffusive, planar and semi-infinite. Deviations from the ideal Cot-
trellian response provide information about complex chemical kinetics and kinetics of
electron transfer. For this reason various modifications of the relationship ID ∼ 1/

√
t

still are investigated. Thus, the transport response of electrodes under conditions of
diffusion and migration was studied by Lange and Doblhofer [3]. The Nernst-Planck
equation was used to derive the transport of the electroactive species with zero ini-
tial condition. The problem then was solved by digital simulation techniques. More
detailed mathematical model of mass and charge transport in a controlled potential
experiment were given by Pfabe [4] and Cohn et al. [5]. This model leads to the
nonlocal identification problem for nonlinear parabolic equation and shows how the
migration component of the the total flux gives rise to a nonlinearity in the transport
equations. Moreover, the model includes the nonlocal additional condition in the form
of the integral relationship between the concentration and current response. Some
numerical methods for the similarity solution of the nonlocal identification problem
have been given by Hasanov [10], Hasanov et al. [11], and also by Shores and Pfabe
[12]. Series of modelling studies related to a hemispherical electrode immersed in a
semi-infinite electrolyte have been presented by Stojek et al. [13–16]. An analytical
formula and some numerical results for the potential step chronoamperometry have
been obtained by Myland and Oldham [17], assuming equal diffusion coefficients of
all ions. Analyzing the similarity problem, here the effect of migration on the limiting
Cottrell currents was studied. For the case of unequal diffusion coefficients this model
was developed by Bieniasz [6]. The effects of the diffusivity ratio DR/DC , as well
as of the electroactive and counter-ions on the limiting chronoamperometric currents
was examined. Analytical formula of the current response for diffusive–convective
linear model of ion transport was given by Hasanov and Hasanoglu [18].

The above sited studies show that obtaining analytical solutions in ion transport
problems is usually impossible, especially in the presence of the migration factor.
This, in particular, means that computational and digital simulations for these prob-
lems are necessary (see, [10–12] and [19] and references therein). However, to make
reliable computational program products and results one needs to have analytical solu-
tions of some simple models. The aim of this work is to derive analytical solutions of
some useful ion transport models, including diffusion and migration. We will analyze
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also an influence of the concentration at x = 0 to the solution, and present some
comparitive analysis of the models.

2 Analytical formulaes for pure diffusive models

Consider one-dimensional model of mass and charge transport in a controlled potential
experiment, i.e. in chronoamperometry, given by Pfabe [4] and Cohn et al. [5]. We
assume that there is an electrode at x = 0, and a medium containing mobile ions and
electroactive species in the one-dimensional motion from the electrode to x = ∞.
A potential E = E(x, t) introduced at the initial time t = 0 causes a reduced frac-
tion of the oxidized species at the surface of the electrode. As oxidized species are
reduced at the surface of the electrode, its concentration decreases, and the concen-
tration CR = CR(x, t) of the reduced species at the electrode increases. As a result
there arises two diffusion processes: oxidized species diffuse in toward x = 0, and the
reduced species, out into the medium. Hence ion transport here can be regarded as a
superposition of diffusion and migration. Exchange of electrons between the surface
of the electrode and electroactive species in the time t > 0 gives rise to the current
response I = I(t), which is related to the concentration of reduced species by the
equation

∫ ∞

0
CR(x, t)dx = 1

nF Se

∫ t

0
I(τ )dτ. (1)

Here n is the number of electrons gained by an ion upon reduction, F is Faraday’s
constant and Se is the surface of the electrode. The total charge carried by the reduced
species is

Q(t) =
∫ t

0
I(τ )dτ. (2)

Definitions (1), (2) permit one to define the total charge Q(t) and the current response
I(t) via the concentration CR(x, t) of the reduced species as follows:

Q(t) = nF Se

∫ ∞

0
CR(x, t)dx, I(t) = nF Se

∫ ∞

0

∂CR(x, t)

∂t
dx . (3)

We denote by JR(x, t) and DR the flux and diffusivity of the reduced species. Accord-
ing to the Nernst-Planck equation [20]

JR(x, t) = −DR

(
∂CR(x, t)

∂x
− F

RT
zRCR(x, t)E(x, t)

)
, (4)

where E(x, t) denotes the electric field, and R and T denote the gas constant and the
temperature, respectively, and zR denotes the valence of the reduced species.
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Let us assume first that the migration flux is negligable, i.e. (F/RT )zRCR E(x, t) =
0. Then the balance equation ∂CR/∂t + ∂ JR/∂x = 0 with the above Nernst-Planck
equation implies the diffusion equation ∂CR/∂t = DR∂2CR/∂x2, x > 0, t > 0.

To derive the initial (at t = 0) and boundary (at x = 0) conditions we use the electro-
neutrality condition, and also the relationship between the potential and concentrations
species [20]. The electroneutrality condition at the boundary x = 0 implies:

zOCO(0, t) + zRCR(0, t) = C∗. (5)

Here zO denotes the valence of the oxidized reduced species, and the constant C∗ ≥ 0
is the characteristic concentration of the medium and may not be zero. The relation-
ship between the potential E and the concentrations CR and CO of the reduced and
oxidized species, at t = 0, is given by the formulae [21]

exp

{
nF

RT
(E(t) − E0′

)

}
= CO(0, t)

CR(0, t)
. (6)

Here E(t) and Eo′
denote the applied electric potential step, and the conditional

potential that is characteristic of the considered chemical reaction.
Solving Eqs. (5) and (6) with respect to CR(0, t) we find CR(0, t) = µ0(t), where

µ0(t) = C∗

zR + zO exp
{ nF

RT (E(t) − E0′
)
} . (7)

If E(t) � E0′
(for a reduction) then the exponential term in Eq. (7) is negligable and

the equation reduces to CR(0, t) = C∗/zR . Since the concentration of the reduced
species is initially zero, at t = 0 the have the initial condition CR(x, 0) = 0. Hence, if
E(t) � E0′

, in absence of migration the IBVP describing the above experiment can
be modelled by the following IBVP:

⎧⎨
⎩

∂CR
∂t = DR

∂2CR
∂x2 , x > 0, t > 0;

CR(x, 0) = 0, x > 0;
CR(0, t) = C∗/zR, t > 0.

(8)

Otherwise, for the given by (7) data µ0(t), the general IBVP is:

⎧⎨
⎩

∂CR
∂t = DR

∂2CR
∂x2 , x > 0, t > 0;

CR(x, 0) = 0, x > 0;
CR(0, t) = µ0(t), t > 0.

(9)

Problem (8) corresponds to the classical Cottrell’s model, which analytical solution
and the corresponding current response IC (t) (Cottrellian) has been obtained by Cohn
in [5]:

CR(x, t) = C∗

zR
er f c

(
x

2
√

DRt

)
, IC (t) = nF SeC∗

zR

√
DR

π t
. (10)
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Table 1 Models and analytical solutions

Models/IBVPs Current response

Pure diffusion ID(t)

Cottrell’s model (8) IC (t) = nF SeC∗
zR

√
DR
π t

CR(0, t) = C∗/zR (Cottrellian)
General IBVP (9)

CR(0, t) = µ0(t) zR
C∗ µ0(0)IC (t) + nF Se

√
DR
π

∫ t
0

∂µ0(τ )
∂τ

dτ√
t−τ

(F1)

Diffusion–migration IDM (t)
Model (12) (Limiting case)

CR(0, t) = C∗/zR exp
(
− ν2

4DR
t
)

IC (t) + nF SeC∗ν
2zR

[
1 + er f

(
ν
2

√
t

DR

)]
(F2)

Model (15) (with data (7)) zR
C∗ µ0(0) exp

(
− ν2

4DR
t
)

IC (t) + nF Se{ ν
2 µ0(t)+

CR(0, t) = µ0(t)
√

DR
π

∫ t
0 exp

(
− ν2(t−τ)

4DR

)
[µ′

0(τ ) + ν2

4DR
µ0(τ )] dτ√

t−τ
} (F3)

where er f c(z) = 1 − er f (z), and er f (z) is the error function.
The solution of the general problem (9) has the following integral representation

[22]:

CR(x, t) =
∫ t

0
µ0(τ )

∂

∂t
er f c

(
x

2
√

DR(t − τ)

)
dτ. (11)

Substituting Eq. (12) in Eq. (4), after elementary calculations we find the formulae (F1)

given in Table 1, for the current response ID(t). Comparing Eq. (10) with Eq. (11) and
(F1) we conclude that formulaes (10) are the special case of these general formulaes.
Furthermore, ID(t) = IC (t), when µ0(τ ) = C∗/zR , and formulae (F1) preserve the
characteristic Cottrellian current dependence ID(t) ∼ t−1/2 [9].

3 The model including diffusion and migration

Let us denote by ν(x, t) = (F/RT )E(x, t)DRzR the coefficient (migration param-
eter) on the right hand side of Eq. (4), related to the migration. We assume that
ν(x, t) = ν = const , and the concentration CR(x, t) of the reduced species at the
electrode (x = 0) is made to jump from zero to C∗/zr . This experiment corresponds
to the following IBVP:

⎧⎨
⎩

∂CR
∂t = DR

∂2CR
∂x2 − ν ∂CR

∂x , x > 0, t > 0;
CR(x, 0) = 0, x > 0;
CR(0, t) = C∗/zR, t > 0.

(12)

Introducing the new function

w(x, t) = exp

(
− ν

2DR
x + ν2

4D
t

)
CR(x, t), (13)
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we can easily show that the function w = w(x, t) satisfies the IBVP

⎧⎨
⎩

wt = DRwxx , x > 0, t > 0;
w(x, 0) = 0, x > 0;
w(0, t) = µ1(t), t > 0,

(14)

with the time dependent concentration at x = 0 µ1(t) = C∗/zr exp(ν2/4Dt). For
many purely diffusional problems auxiliary problem (14) with the given boundary
concentration µ1(t) at x = 0 can be hanled seperately (see, [20,23] and references
therein). This model corresponds to the exponentially increasing concentration of
reduced species at x = 0. The solution of this problem can be obtained from formu-
lae (11) by subsituting here µ0(t) = µ1(t). The analytical formulaes for the current
responses corresponding to problems (12) and (14) are obtained in [18]. The current
response corresponding to the model (12) is given in Table 1 by formulae (F2).

We consider here the general diffusion–migration model with the real data µ0(t),
given by Eq. (7):

⎧⎨
⎩

∂CR
∂t = DR

∂2CR
∂x2 − ν ∂CR

∂x , x > 0, t > 0;
CR(x, 0) = 0, x > 0;
CR(0, t) = µ0(t), t > 0.

(15)

Solution of this problem can be obtained by using the solution w(x, t) of the auxiliary
problem (14), with µ1(t) = µ0(t):

CR(x, t) = x

2
√

π DR
exp

(
νx

2DR
− ν2t

4DR

)∫ t

0
exp

(
ν2τ

4DR
− x2

4DR(t − τ)

)

× µ0(τ )√
(t − τ)3

dτ. (16)

The formulae for the current response IDM (t) corresponding to the general diffu-
sion–migration model (15) is given by formulae (F3) in Table 1. It can be verified
that all the above formulas for the current response can be obtained from this for-
mulae. This formula convenient and useful for testing various numerical methods for
diffusion–migration models.

The analytical formulaes for the current responses, given in Table 1 and correspond-
ing to the above considered models with the given initial concentrations, precisely
show deviations from the Cottrellian as well as dependence of these deviations from
the physico-chemical parameters. Specifically, all the formulaes (F1) − (F3) contain
the Cottrellian IC (t). Further, the formulae (F2) is the limit case of the formulae (F3),
when E(t)− E0′ → −∞, which means in practce E(t) � E0′

. The case E(t) 	 E0′

means that the initial concentration CR(0, t) at x = 0 is too small. The formulae (F3)

also show the charcter of dependence of the current response on migration parameter
ν > 0.

123



J Math Chem (2008) 44:133–141 139

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

time

cu
rr

en
t r

es
po

nc
e

ν=0, C
R

(0,t)=C*/z
R

ν=0.1, C
R

(0,t)=C*/z
R

ν=0.5, C
R

(0,t)=C*/z
R

ν=0, C
R

(0,t)=C*/z
R

+t

Fig. 1 Current responses corresponding to pure diffusion and diffusion–migration models, and constant
initial concentration CR(0, t) = C∗/zR(DR = 1, C∗ = 1, (zR , zO ) = (1, 3)).(a) initial concentration
CR(0, t) = C∗/zR (b) CR(0, t) = µ0(t)

4 Computational experiments

Analytical formulaes presented in Table 1 show the relationship between the classical
Cottrellian IC and the current responses for different models. These formulaes also
show the dependence of the current responses on the diffusion–migration parameters.
We will analyze here these dependencies on the numerical solutions of these models.
The valences zR and zO of the reduced and oxidized species are assumed to be inte-
gers of the same sign, and zR 
= −1, zO 
= 1, since one electron must be gained in
reduction. In our computations, −4 < zR < zO ≤ −1 and 1 < zR < zO ≤ 3. The
value of the parameter κ = nF/(RT ) is assumed to be [20] as κ = 0.0592 log e. For
simplicity we will use the normalized diffusion coefficient DR = 1 and characteristic
concentration C∗ = 1.

In the first series of computational experiments demonstrate the comparison of cur-
rent responses corresponding to different models. Figure 1a visualizes an influence of
the migration parameter ν > 0 (normalized by RT/(F E)) to the current response. The
solid line here is the classical Cottrelian IC , and other lines are the current responses
corresponding to the general diffusion–migration model, given by Eq. (15). Except
the line ◦ ◦ ◦, here all lines, which have the same charcter of decay, correspond to
the constant concentration CR(0, t) = C∗/zR at x = 0, and only the upper line ◦ ◦ ◦
corresponds to the non-constant concentration at x = 0 : CR(0, t) = C∗/zR + t .
Figure 1b demonstrates the behaviour of the current response for the positive and
negative values of valences of the reduced and oxidized species.

To study the dependence of the current response and the concentration profile
of the reduced species on the difference �E = E(t) − E0′

of the applied elec-
trode potential step and the conditional potential of the considered electrochemical
reaction in Eq. (7), series of computational experiment were realized for the general
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Fig. 2 An influence of the applied electrode potential step �E(t) to the character of the current response
and concentration profiles at t = 4(DR = 1, ν = 1). (a) Current responses IC and IDM (b) Concentration
profiles ((zR , zO ) = (1, 2))

diffusion–migration model (15). The solid line in Fig. 2a corresponds to the limit-
ing case when the concentration at x = 0 is constant: CR(0, t) = C∗/zR , when
(zR, zO) = (1, 2). Other lines show the behaviour of the current response when �E
changes from −102 to 102. The case �E = −102 evidently close to the limiting case
CR(0, t) = C∗/zR , and the case �E ≥ 102 corresponds to almost zero values of the
concentration.

Note that in chronoamperometry, concentration of the reduced species is made jump
from zero to C∗/zR at time t = 0. Reassessment of this phenomenon is illustrated
in Fig. 2b. For extremely high voltage perturbation, the concentration of oxidized
species at the electrode drops immediately to zero, as was established experimentally
[20]. This expectation is seen from the profiles CR(x, t = 4) of the concentration
in Fig. 2b. To show an influence of the valence zO of the oxidized species the case
(zR, zO) = (1, 3) is also illustrated here (the second line . . . from below).

5 Conclusions

Analytical solutions of diffusion–migration model arising in ion transport problem
has been derived based on the Nernst-Planck equation. The presented general solution
can generate all well known analytical solutions with various type of concentrations at
the initial point. The comparitive analysis of the formulaes for current responses and
deviation from the classical Cottrellian are deived. The presented analytical solutions
can also be used as an important tool in numerical simulations.
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